Feedback

  • [recaptcha]

THE MANUFACTURING PROCESS OF BANK VAULT

RAW MATERIALS

Materials used in vaults and vault doors have changed for the years. The earlier vaults had steel doors, but because these could easily be cut by torches, different materials were tried. Massive cast iron doors had more resistance to acetylene torches than steel. The modern preferred vault door material is actually the same concrete as used in the vault wall panels. It is usually clad in steel for cosmetic reasons.

Vault walls and doors are comprised mainly of concrete, steel rods for reinforcement, and proprietary additives to give the concrete even more strength.

DESIGN

Bank vaults are built as custom orders. The vault is usually the first aspect of a new bank building to be designed and built. The manufacturing process begins with the design if the vault, and the rest of the bank is built around it. The vault manufacturer consults with the customer to determine factors such as the total vault size, desired shape, and location of the door. After the customer signs off on the design, the manufacturer configures the equipment to make the vault panels and door. The customer usually orders the vault to be delivered and installed. That is, the vault manufacturer not only makes the vault parts, but brings the parts to the construction site and puts them together.

Bank vaults are typically made with steel-reinforced concrete. This material was not substantially different from that used in construction work. It relied on its immense thickness for strength. An ordinary vault from the middle of the century might have been 18 in (45.72 cm) thick and was quite heavy and difficult to remove or remodel around. Modern bank vaults are now typically made of modular concrete panels using a special proprietary blend of concrete and additives for extreme strength. The concrete has been engineered for maximum crush resistance. A panel of this material, though only 3 in (7.62 cm) thick, may be up to 10 times as strong as an 18 in-thick (45.72-cm) panel of regular formula cement.

THE MANUFACTURING PROCESS

THE PANELS

  • The first step in the process is to mold the wall panels. Unlike regular concrete used in construction, the concrete for bank vaults is so thick that it cannot be poured. The consistency of concrete is measured by its “slump.” Vault concrete is said to have zero slump. It also sets very quickly, drying in only six to 12 hours, instead of the three to four days needed for most concrete. Workers dump the concrete mix into the panel molds.
  • Next, a network of reinforcing steel rods are manually placed into the damp mix.
  • Then the molds are vibrated for several hours. The vibration settles the material and eliminates air pockets.
  • The edges are smoothed with a trowel, and the concrete is allowed to harden.
  • Workers unmold the product and place the panels on a truck for transport to the customer’s construction site.

THE DOOR

  • The vault door is also molded of special concrete used to make the panels, but it can be made in several ways. The door mold differs from the panel molds because there is a hole for the lock and the door will be clad in stainless steel. Some manufacturers use the steel cladding as the mold and pour the concrete directly into it. Other manufacturers use a regular mold and screw the steel on after the panel is dry.

THE LOCK

  • The lock for a modern bank vault is usually a dual-control combination lock, meaning it takes two people to open it. This lock is connected to a time lock that can be set so the combination lock will not open until the pre-set number of hours has passed. This is still the “theftproof” lock system that Sargent invented in the late nineteenth century. Such locks are manufactured by only a few companies worldwide. The locking system is supplied already assembled to the vault manufacturer.

INSTALLATION

  • The finished vault panels, door, and lock assembly are trucked to the bank construction site. The vault manufacturer’s workers then place the panels enclosed in steel at the designated spots and weld them together. The vault manufacturer may also supply an alarm system, which is installed at the same time. While older vaults were armed with multiple weapons against burglars, such as blasts of steam or teargas, this is rarely found in modern vaults. Instead the vault door and interior might be wired with a listening device that picks up unusual or unusually frequent sounds. The vault may also be surveyed with a camera and an alarm will be hooked up to alert local police if the door or lock is tampered with.

BYPRODUCTS/WASTE

The manufacturing process itself has no unusual waste or byproducts, but getting rid of old bank vaults can be a problem. Newer, modular bank vaults can be moved if a bank closes or relocates. They can also be enlarged if the bank’s needs change. Older bank vaults are quite difficult to demolish. If an old bank building is to be renovated for another use, in most cases a specialty contractor has to be called in to demolish the vault. A vault’s demolition requires massive wrecking equipment and may take months of work at a large expense. At least one company in the United States refurbishes old vault doors that are then resold.